
MASTER THESIS

Android Malware Detection Using
Machine Learning with User Feedback

and Static Features

Author:
Mohammad Modallal

Supervisor:
Dr. Ahmad ALSADEH

A thesis submitted in partial fulfillment
for the degree of Master of Computing

June 22, 2020

https://www.linkedin.com/in/mohammad-modallal-bb8752a3/
http://www.birzeit.edu/en/faculty-staff/ahmad-alsadeh


23-06-2020



iii

Declaration of Authorship
I, Mohammad MODALLAL, declare that this thesis titled, “Android Malware Detec-
tion Using Machine Learning with User Feedback and Static Features” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:



v

Abstract
According to International Data Corporation (IDC), the Android operating sys-

tem has occupied most of the market share and it will increase to 87.4% by the end
of 2023. Unfortunately, there is a large number of malicious applications that at-
tack Android OS in different ways. Therefore, much research has been done in this
area to detect these malware, but until now there is no complete solution that can
detect all malware, especially new malware that increases from year to year. In this
research, we proposed MLSecAndroid: an Android anti-malware approach that auto-
matically detects malicious applications in Android applications‘ marketplaces us-
ing machine-learning techniques. MLSecAndroid uses 14984 benign applications
and 2116 malicious applications from the Google Play and Aptoide stores with their
users‘ feedbacks. The collected dataset need for cleaning to be ready for processing.
Therefore, the pre-processing stage is applied to clean the data using many steps
such as data cleaning, data integration, and data transformation. MLSecAndroid
uses static features, such as permissions, system API calls, users‘ feedbacks, and
other features. The feature extraction stage produces thousands of features. There-
fore, we applied the feature selection stage to select the best n-features. We evaluate
the use of the features with different machine learning classifiers such as support
vector machines (SVM), Random Forest, Decision Tree(DT), K-Nearest Neighbors al-
gorithm (KNN), AdaBoost, and Naive Bayes classifiers in order to classify unknown
Android application as either malware or benign. The experiment result shows that
the MLSecAndroid has a very good performance in comparison with related works.
It achieves an accuracy of 98.21% and a recall of 93.52% when using the SVM classi-
fier.



 مستخلص
معظم (Android) أندروید تشغیل نظام یشكل ،(International Data Corporation) الدولیة البیانات لشركةِ              وفقًا
التطبیقات من كبیر عدد هناك للأسف، .2023 عام نهایة بحلول %87.4 من أكثر إلى یزید أن المتوقع ومن السوق                     حصة
هذه عن للكشف المجال هذا في الأبحاث من العدید إجراء تم لذلك، مختلفة. بطرق أندروید التشغیل نظام تهاجم التي                     الضارة
الضارة البرامج خاصة الضارة؛ البرامج هذه جمیع عن الكشف یمكنه كامل حل یوجد لا الآن حتى ولكن الضارة،                    البرامج

 الجدیدة التي تزداد من عامٍ إلى آخر.
 

التعلم تقنیات باستخدام الضارة أندروید تطبیقات تلقائیًا یكتشف الذي الضارة البرامج لمكافحة منهج اقترحنا البحث، هذا                  في
Google متاجرِ من ضاراً تطبیقًا 2116 و حمیدًا تطبیقًا 14984 الأسلوب هذا یستخدم .(machine-learning)                الآلي

 Play  و Aptoide  مع آراء المستخدمین.
 

لتنظیف المسبقة المعالجة مرحلة تطبیق یتم لذلك، للمعالجة. جاهزة لتكون التنظیف إلى المجمعة البیانات مجموعة                 تحتاج
میزات المقترح المنهج یستخدم البیانات. وتحویل البیانات وتكامل البیانات تنظیف مثل الخطوات من العدید باستخدام                 البیانات

  ثابتة  مثل أذونات استخدام مصادر الأجهزة المشغلة لتطبیقات الأندروید وتعلیقات و أراء المستخدمین ومیزات أخرى.
 

  تنتج مرحلة استخراج المیزات آلاف المیزات، لذلك قمنا بتطبیق مرحلة اختیار المیزة لتحدید أفضل عدد من المیزات
support vector) خوارزمیة مثل الآلة لتعلم المختلفة التصنیفات مع المیزات استخدام تقییم طریق عن (n-features)               
K-Nearest) خوارزمیة ،(Decision Tree) خوارزمیة ،(Random Forest) خوارزمیة ،(machines         
غیر أندروید تطبیقات تصنیف أجل من (Naive Bayes) خوارزمیة ،(AdaBoost) خوارزمیة ،(Neighbours            

  المعرفة والتي إما أن تكون تطبیقات ضارة أو حمیدة.
 

بقیمة (Accuracy) دقة یحقق حیث الصلة. ذات بالأعمال مقارنة جداً جید بأداء یتمتع نهجنا أن التجربة نتیجة                   تظهر
.(SVM) بقیمة 93.52% عند استخدام خوارزمیة (Recall) 98.21% واستدعاء 

 



vii

Contents

Declaration of Authorship iii

Abstract v

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Research Problem and Motivation . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Android System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 System Applications . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Java API Framework . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Native C/C++ Libraries . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Android Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Hardware Abstraction Layer (HAL) . . . . . . . . . . . . . . . . 8
2.1.6 The Linux Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.7 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Android Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Privacy or Read Related Permissions . . . . . . . . . . . . . . . 9
2.2.2 Write or Modify Related Permissions . . . . . . . . . . . . . . . 9

2.3 Android System API Calls . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Android Users Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Android System Malware . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Malware Detection Approaches and Tools . . . . . . . . . . . . . . . . . 13

2.6.1 Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2 Androguard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.3 Aptoide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.4 VirusTotal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.5 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.6 Selenium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



viii

3 Related Work 17
3.1 Non-Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Static Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Dynamic Analysis Techniques . . . . . . . . . . . . . . . . . . . 18
3.1.3 Hybrid Analysis Techniques . . . . . . . . . . . . . . . . . . . . 18

3.2 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Classical Machine Learning Techniques . . . . . . . . . . . . . . 19
3.2.2 Deep Learning Techniques . . . . . . . . . . . . . . . . . . . . . 21

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 MLSecAndroid Approach 23
4.1 MLSecAndroid Approach Overview . . . . . . . . . . . . . . . . . . . . 23
4.2 Data Collection Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Pre-processing Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Feature Extraction Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Android Application Permissions . . . . . . . . . . . . . . . . . 28
4.4.2 System API Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.3 Users Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.4 Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Feature Selection Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Classification Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Training and Testing Models Stage . . . . . . . . . . . . . . . . . . . . . 35

5 Experiments and Results 37
5.1 System Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Machine Learning Classifiers Evaluation Experiments . . . . . 39
5.3.2 Features Selection Evaluation Experiments . . . . . . . . . . . . 40
5.3.3 Dataset Size Evaluation Experiments . . . . . . . . . . . . . . . 41

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion and Future Work 47
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49

7 Appendix 55
7.1 Androguard - Get Permissions . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Androguard - Get System API Calls . . . . . . . . . . . . . . . . . . . . 55
7.3 Aptoide - Get Android Applications Rating and Comments . . . . . . 56
7.4 Aptoide - Download Applications . . . . . . . . . . . . . . . . . . . . . 56
7.5 VirusTotal - Testing Android Applications . . . . . . . . . . . . . . . . . 56



ix

List of Figures

1.1 New Android mobile malware from 2016 to 2018 [2] . . . . . . . . . . . 1

2.1 Android System Architecture [7] . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Android Activity Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Runtime permission request dialog. . . . . . . . . . . . . . . . . . . . . 10
2.4 Install time permissions dialog . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Example of Rating and writing comment in Google Play store. . . . . 12

3.1 Android Malware Detection Techniques . . . . . . . . . . . . . . . . . . 17

4.1 General classical machine learning system overview. . . . . . . . . . . . 23
4.2 MLSecAndroid Approach Overview . . . . . . . . . . . . . . . . . . . . 24
4.3 Collected Dataset Applications Types . . . . . . . . . . . . . . . . . . . 25
4.4 Collected Dataset Malware Types . . . . . . . . . . . . . . . . . . . . . . 26
4.5 MySQL Database UML diagram . . . . . . . . . . . . . . . . . . . . . . 26
4.6 Permissions Analysis Result. . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Malware applications terms .Vs frequency. . . . . . . . . . . . . . . . . 32
4.8 Support Vector Machine (SVM) Classifier. . . . . . . . . . . . . . . . . . 34
4.9 k-Nearest Neighborss (KNN) Classifier. . . . . . . . . . . . . . . . . . . 34
4.10 Random Forest Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Number of Features .Vs Recall. . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Size of the Dataset .Vs Recall. . . . . . . . . . . . . . . . . . . . . . . . . 42



xi

List of Tables

2.1 Android Activity Life-cycle Methods. . . . . . . . . . . . . . . . . . . . 7
2.2 Privacy/Read related permissions . . . . . . . . . . . . . . . . . . . . . 9
2.3 Write/Modify related permissions . . . . . . . . . . . . . . . . . . . . . 9

3.1 Summary of related-work based on classical machine learning tech-
niques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Dataset Statistics. Number of Samples of Each Class Over published
Years in The Google Play Store. . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 File size binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Number of downloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Most Frequent Permissions . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Most Frequent API Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Classifiers Evaluation Results. . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Best Number of Features Experiment Results. . . . . . . . . . . . . . . . 41
5.4 Features categories Experiment Results. . . . . . . . . . . . . . . . . . . 41
5.5 Best Number of Applications Experiment Results. . . . . . . . . . . . . 43
5.6 Dataset Evaluation Based on Published Date Years Results . . . . . . . 43



xiii

List of Abbreviations

APK Android PacKage
OS Operating System
SAT Static Analysis Techniques
DAT Dynamic Analysis Techniques
HAT Hybrid Analysis Techniques
SVM Support Vector Machines
KNN K-Nearest Neighbors
LDA Linear Discriminant Analysis
NN Neural Networks
SMS Short Message Service
API Application Programming Interface
UI User Interface
ART Android Run-Time
HAL Hardware Abstraction Layer
VM Virtual Machine
PRS Premium Rate Services
FP False Positive
FN False Negative
TP True Positive
TN True Negative
CFG Control Flow Graph
RNN Recurrent Neural Network
CNN Convolutional Neural Network
ESN Echo State Network
DBN Deep Belief Network
NLP Natural Language Processing



1

1 Introduction

The Personal Portable Devices (PPD) have become an inseparable component of
most people’s lives. For example, The smartphones provide many functions such
as making calls, making payments, take a photo, and many other daily functions.
These functions are nearly used by every person all over the world.

The smartphones are operate using different operating systems such as Android OS
which is the most popular platform with more than 70% of market share. It has at-
tracted a lot of attention because it applied in a large number of terminal platforms
including mobile phones, computers, and panel computers. The Android market
share will increase to 87.4% by the end of 2023 according to International Data Cor-
poration (IDC) due to 5G launches [1].

The rapid growth of Android system usage every day leads to the appearance of
new Android applications developed by attackers to attack the users of the Android
operating system. These applications are called malware. The malware applications
are uploaded to Android application stores such as Google Play store due to the
weak policy of submitting application on these stores. Therefore, there are growing
threats for mobile users by installing more malware applications without the ability
to detect them before installing the applications to the user device. Figure 1.1 shows
new Android malware appear from 2016 to 2018.

FIGURE 1.1: New Android mobile malware from 2016 to 2018 [2]



2 Chapter 1. Introduction

1.1 Research Problem and Motivation

Most users upload applications from Google Play Store which is supported by Google
company. Google Play Store checks every uploaded application. Unfortunately,
some malicious applications pass Google‘s test and get accepted.

In general, most Android devices contain anti-virus software, but around 60% of
users do not use it [3]. The anti-virus software’s offered solutions against malware,
these solutions depend on scanning every app, monitoring traffic, tracking appli-
cations remotely, and so on. Also, it may be offered a data wipe if the phone has
been stolen or lost. These software‘s are consumed the device‘s power, memory, and
affect the device‘s performance. Moreover, it generally annoying the users since it
appears as notifications and pop-ups. Therefore, many users do not use them and
they do not have any protection methods against malicious applications.

The effect of malware is changing dramatically when the user downloads APK files
from the internet or any source other than the Google Play store. There are many
unofficial websites that role as third-party applications repositories, these websites
provide applications to users. For example, Aptoide [4] which is a marketplace for
Android applications, has more than 200 million users and it contains more than
900,000 Android applications.

The malware authors added malicious code to normal applications, Then repack-
aged them and uploaded them to the unofficial website. Therefore, when users
downloading applications from these unofficial websites, they become victims of
these malicious applications. Moreover, most users do not read the permissions
when they download applications, only 17% of users read the permissions during
installation [5]. When the user downloading APK files and tap the installation but-
ton, the application requests a list of permissions from users which might be sensi-
tive such as access contacts information, camera, and microphone permissions. The
studies show that most users do not pay attention and understand the requested
permissions [5].

In summary, there is a potential risk when the users install the malware applica-
tions on their devices. This creates a need to find malware applications and avoid
their risk. Therefore, the researchers and manufacturers make a great effort to build
anti-malware detection systems, which have robust detection techniques.

1.2 Research Questions

The study gives answers to the following research questions:

• How much data is needed to build an effective Android malware detection
system?

• What are the representative features to detect the malware in Android sys-
tems?

• What is the best machine learning technique for building anti-malware in An-
droid system?



1.3. Objectives 3

• What are the most permissions, and API calls used by benign/malware An-
droid applications?

1.3 Objectives

The primary goal of this research is to develop an anti-malware approach that can
detect malware applications in Android applications‘ marketplaces. The proposed
approach use combination of machine learning techniques and a number of ex-
tracted features from the Android APK file and user feedback. It presents a mal-
ware detection method for any unknown Android application. While most of the
previous research extracted features that are based on static features extracted from
Android APK files such as permissions, and API calls only. In this research, we
introduced MLSecAndroid which is an approach that combines features extracted
from Android APK and user feedback with machine learning techniques that can
be used to detect potential Android malware without the need for the application
source code. A set of sub-goal for this research had been set as followed:

1. Design and implement a framework for data collection, data pre-processing,
and feature extraction. The key elements of this framework are:

• Implement the data collection service that downloads applications and
extracts users‘ feedbacks from Android applications stores such as the
Google Play Store and Aptoide Store.

• Implement data cleaning service that clean collected data throw many
steps that include data cleaning, data integration, and data transforma-
tion.

• Implement a feature extraction service that extracts permissions, API
calls, and other features from Android APK files, and extract user feed-
back features from user feedback texts using sentiment analysis tools and
NLP techniques.

2. Evaluate the use of machine learning classifiers to identify potential Android
malware based upon the features extracted in goal number 1.

3. Evaluate the features extracted in goal number 1.

4. Evaluate the dataset collected in goal number 1.

1.4 Contributions

Our contribution can be summarized in the following areas:

• Features :While most of the previous studies do not take into consideration
the user feedback features, in this research, we do not depend only on static
features such as permissions and API calls, but we also depend on Android
application users rating and analysis user feedback comments in most com-
mon Android stores such as Google Play and Aptoide stores (see section 2.4).

• Android Malware dataset [6] : We generate a representative dataset of An-
droid applications that contains more than 10 different categories with a total
of 17100 benign and malware applications. The dataset is labeled using Virus-
total which used more than 60 tools (see section 2.6.4).



4 Chapter 1. Introduction

• New malware detection approach: We propose MLSecAndroid, a new mal-
ware detection approach that is more efficient and accurate than available so-
lutions (see section 4.1).

1.5 Thesis Organization

This thesis is further outlined as follows. In Chapter 2, we provide background
about system architecture, permissions, system API calls, users feedback types, and
malware categories. The related work discusses in Chapter 3. In Chapter 4, we
discuss the Android malware detection proposed approach. In chapter 5 we discuss
the experiments and results. Finally, we conclude our work and talk about future
work in Chapter 6.



5

2 Background

In this chapter, we discuss the Android system. Section 2.1 is a brief explanation of
the Android system architecture and components. Section 2.2 talks about Android
typical permissions. Section 2.3 discusses Android system API calls. Section 2.4 in-
troduces Android users feedback. Finally, Section 2.5 summarizes Android malware
types.

2.1 Android System Architecture

The Android operating system is designed for Android devices, its a Linux-based,
open-source, and run on a wide number of devices (mobiles, tablets, TVs, ...etc). Fig-
ure 2.1 shows the Android platform components [8].

2.1.1 System Applications

Android system has sets of core applications, such as Calendar, Email, SMS, Browsers.
These applications come with Android and the Android users cannot delete them.
The Android users can download applications, such as Facebook, Twitter, Linked-In
from the official website (Google Play store) or any third party applications reposi-
tories.

2.1.2 Java API Framework

The Android OS provides a set of entire features through APIs. These APIs are writ-
ten using JAVA language and it is the essential building blocks that the developer
needs to build Android applications.
The Java API framework includes the following:

• Activities: The activities display one screen of the Android app’s user inter-
face, it’s much like a form for a web page. The Android application may con-
tain more than one activity. An example of Android activity is the Activity
class which displays a Login Screen to the user. Figure 2.2 shows Android Ac-
tivity life-cycle and Table 2.1 describes the methods that represent the states
that the Android activity goes during its life cycle.

• Content Provider: The Content Provider shares application data that is saved
in the SQLite database or other storage locations. It works in two scenarios
which are access content providers in other applications or create new content
providers in your application and allow other applications to access it [7].

• Services: The service is run in the background without user interaction to per-
form long-running tasks. For example, checking for new data, Internet down-
loads and updating content providers.



6 Chapter 2. Background

FIGURE 2.1: Android System Architecture [7]

• Broadcast receivers: This type contains components to receive and react to
broadcast announcements. These broadcast announcements initiated by ap-
plication code or other applications. For example, The WiFi connection estab-
lishes signals and a broadcast receiver for an email app.



2.1. Android System Architecture 7

FIGURE 2.2: Android Activity Life-Cycle

TABLE 2.1: Android Activity Life-cycle Methods.

Method Description

onCreate()
The method onCreate() is the first method that the Android OS
called when an activity is created. it followed by onStart() method.

onStart()
The method onStart() called when the activity is ready and becom-
ing visible to the user. It may be followed by onResume() method or
onStop() method.

onResume()
The method onResume() called when the activity starts interacting
with the device users. It followed by onPause().

onStop()
The method onStop() called when the activity is no longer visible to
the Android device user since there is another activity that has been
resumed.

onRestart()
The method onRestart() called when the activity has been stopped
and start again. It followed by onStart() method.

onPause()

The onPause() method called when the system is started resuming a
previous activity. The implementations of this method should be very
quick since the next activity will not be resumed until this method is
finished.

onDestroy() The onDestroy() method called before the activity is destroyed.

2.1.3 Native C/C++ Libraries

The Android system contains many components and services, such as Android Run-
time (ART) that are built using native code which needs native libraries that written
in C and C++ programming languages. Examples of these libraries are Libc, Open-
MAX AL, and OpenGL ES libraries.

2.1.4 Android Runtime

The Android Run-time (ART) is used to run multiple virtual machines on low-
memory Android devices. The Android devices with Android version 5.0 or higher
run each application in its instance of ART. The ART includes many features, such
as it optimize garbage collection and its provide better-debugging support.



8 Chapter 2. Background

2.1.5 Hardware Abstraction Layer (HAL)

The HAL is provided interfaces for device hardware to Java API framework. It con-
sists of many modules, each of them is interfaced with a specific type of hardware
such as Bluetooth, Headphone, and Camera.

2.1.6 The Linux Kernel

The Android platform built based on the Linux kernel. This gives it the security
features existing in a Linux system and allows the device manufactures to make
hardware drivers depend on the well-known kernel.

2.1.7 Power Management

The Android devices with version 9.0 or higher have an improvement in device
power management throw limiting applications access to device resources depend
on the user usage pattern and restrict all applications when the user turned on the
battery save mode [9].

2.2 Android Permissions

Android has a permission model that aims to protect Android users. This permis-
sion model prevents the Android application from access to sensitive information or
uses device hardware without taking permission from the device users. All Android
applications contain AndroidManifest.xml file that contains the list of permis-
sion that the application request. When the user downloads the application and tab
install button, the Android system reads the permissions list from AndroidMani-
fest.xml and display them to the user. Then it asks the user to allow or deny this
application from getting this permission [10].

There are two types of permissions which are normal permissions and dangerous
permissions. The normal permissions are granted to applications automatically at
install time by the Android system and without user involvement, such as setting
the time zone permission. The dangerous permissions require user agreement. The
way that the Android system asks the user to grant this permission is depending on
the Android OS version that is running on an Android device.

There are two ways to request dangerous permission which are: run-time and install-
time. The Android system asks for real-time permissions in Android 6.0 (API 23) or
higher. The user is not asked to grant the permissions in install-time, instead of
that, the system asks users to grant dangerous permission when they operate the
functions (Figure 2.3). In Android 5.1.1 (API 22) or lower, the Android system auto-
matically displays the list of permissions to the user (Figure 2.4) and asks the user
to grant all permissions at install-time [11]. There are many dangerous permissions
some of them are more dangerous than others. We can divide them according to
effects to the following [12]:



2.2. Android Permissions 9

2.2.1 Privacy or Read Related Permissions

Many Android malware applications ask users to access private information that
they may do not want to share with others. These permissions mostly read per-
missions. For example, The Camera application does not need to access the user‘s
contact information. Table 2.2 display list of privacy/read related permissions.

TABLE 2.2: Privacy/Read related permissions

Method Description
ACCESS_FINE_LOCATION Access user exact location.
READ_CALL_LOG Read user call log.
READ_CALENDAR Read calendar information.
RECORD_AUDIO Allow the application to record audio from the user device.
READ_SMS Read user SMS messages.
RECEIVE_SMS Receive SMS messages

CALL_PHONE
Allow the application to initiate a phone call without run
the Dialer user interface.

CAMERA Access all camera features.

GET_ACCOUNTS
Allows application to access the list of accounts in the Ac-
counts Service.

READ_PHONE_STATE
Allow the application to read the device state and the
phone number.

READ_CONTACTS Read the user’s contacts information.

2.2.2 Write or Modify Related Permissions

The write related permissions allow the Android application to write to the user de-
vice. For example, The malware application may write on the user device calendar.
The modify related permissions allow the Android application to modify user de-
vice data. For example, the malware application may modify a contact number to
a misleading fraud number. The Table 2.3 display list of Write or Modify related
permissions.

TABLE 2.3: Write/Modify related permissions

Method Description
WRITE_CALENDAR Write data to the user’s calendar.
WRITE_CONTACTS Write data to the user’s contacts.
WRITE_CALL_LOG Write data to the user’s call log.

SEND_SMS
Allow the application to send SMS message from user de-
vice.

WRITE_SETTINGS Allows the application to read/write the system settings.
ADD_VOICEMAIL Allows the application to add voicemails.



10 Chapter 2. Background

FIGURE 2.3: Runtime permission request dialog.

2.3 Android System API Calls

The system API calls feature represents all the functions used by Android applica-
tions to interact with Android OS. There is a large number of Android API calls.
In this research, we analyze the malware applications and specified the list of API
calls that frequently used by Android malware, such as getSubscriberId() and
getDeviceId(). [13].

2.4 Android Users Feedback

The Android application stores, such as Google Play and Aptoide allow Android
users to provide their feedback about the applications in two ways by rating appli-
cation and writing comments.

• Rating Application: The user can rate an application by choosing 0 to 5 stars.
Choosing 0 stars is the worst rating and it means that the user not satisfied
with the app, whilst choosing 5 stars is the best rating and means that the user
is very satisfied with the app.

• Writing comments: Besides the application rating, the users can write com-
ments to ask a question about the application or provide feedback about their
experience with the app. The feedback may be positive and will encourage



2.5. Android System Malware 11

FIGURE 2.4: Install time permissions dialog

other users to use the app, or it may be negative and warned other users from
using this app. Also, it may be neutral.

The bad rating and negative comments mean that the application has something
wrong and may it has malicious behaviors. Figure 2.5 shows an example of how the
user rate and writes the comment in the Google Play store.

2.5 Android System Malware

Android malware is developing rapidly. The first Trojan malware was discovered
in 2010 [14] and since this time the Android malware becomes more complex and
appears in different types. Android malware can be classified into five categories
according to functionality which are phishing, financial charges, extortion, privilege
escalation, and information collection [15, 14].



12 Chapter 2. Background

FIGURE 2.5: Example of Rating and writing comment in Google Play
store.

• Phishing:
The Phishing attack depends on social engineering and disguises the Android
malware application to be as a normal app. This attack becomes more danger-
ous when it targets financial applications. For example, The SmiShing phish-
ing attack that sends fake SMS to users, these SMS contains a link to the crafted
webpage that can steal user credentials information.

• Financial charges:
The Android malware that related to financial charges categories causes finan-
cial charges to users without their awareness. For example, the Premium Rate
Services (PRS) are paid services that the Android users can buy by sending an
SMS message to a telecom provider. The Android malware applications can
send SMS from infected users devices that cause additional fees.

• Extortion:
In this type of attack, the attacker accesses the important files in device storage
and encrypt them. Then, the attacker asks the infected user to ransom for
decrypting important files. The attacker may delete the files after receiving the
ransom from the user.



2.6. Malware Detection Approaches and Tools 13

• Privilege escalation: Although Android applications cannot access the user
device resources until the user grant it the required permissions, but some
Android Malware exceeds its privileges and circumvents the permission tech-
niques throw indirect tactics to access. This can be done by malware that
can access the normal applications that have privileges to access the device
resources.

• Information collection: In addition to the above categories, There is a type
of malware that collects different information from infected user devices, this
includes contact information, SMS messages, and user accounts. For example,
The SndApps application sends device information such as email addresses
and phone numbers to a remote server.

2.6 Malware Detection Approaches and Tools

In this section, we discuss research tools and approaches that we use in our proposed
approach. Section 2.6.1 discusses the Reverse Engineering approaches. Section 2.6.2
introduces the Androguard tool. Section 2.6.3 talks about Aptoide application store.
Section 2.6.4 introduces VirusTotal tools. Section 2.6.5 discusses sentiment analysis
approaches. Finally, Section 2.6.6 discusses Selenium tool.

The importance of detecting malware in Android devices encourages researchers
and manufacturers to create new tools and techniques to detect this malware. Many
anti-malware tools used static analysis, dynamic analysis, or hybrid analysis. In this
chapter, we introduce the techniques and tools used for static code analysis.

2.6.1 Reverse Engineering

In general, Reverse engineering is a process of divide an object into parts to under-
stand how it works. In this section, we introduce reverse engineering for Android
applications which is the process of generating the source code from executable
code. Reverse engineering allows the reverse engineer to understand the function-
ing of Android applications. Also, it allows him to modify the Android applications
[16].

Dalvik bytecode is designed for the Android platform as follows: it was written
in Java using Android API, then it compiled to Java bytecode, then it converted to
Dalvik instructions. It is executed by the Dalvik VM. There are many tools to reverse
Dalvik bytecode, such as undX [17] and Dex2Jar [18] that generate the .jar file from
a .apk file. These tools work fine for simple applications, but they have difficulties
when dealing with complex applications that have complex Dalvik bytecode.
In this research, we used the Androguard program which can reverse different An-
droid applications by converting them from bytecode to readable code.

2.6.2 Androguard

Androguard is a tool written in python programing language to deal with Android
.apk files. it can reverse different Android applications by converting them from
bytecode to readable code [19].
It can play with the following files types:



14 Chapter 2. Background

• .dex,.odex files.

• Android application .apk files

• Android’s binary XML files.

• Android resources files.

Androguard tool has many features such as it can reverse engineering of Android
applications, disassemble of Android .dex/.apk files format, decompilation from
Dalvik bytecode to Java code, and static analysis of the code, permissions, and sys-
tem API calls.

2.6.3 Aptoide

Aptoide is a marketplace for Android applications. It allows users to own and man-
age their stores which is different than Google play which has a centralized store.
It has more than 200 million users around the world. It is available in different lan-
guages. It contains more than 900,000 Android applications and it has over 7 billion
applications downloads [4].

The Aptoide provides many APIs that allow developers to get Android application
information such as application rating, number of application downloads, and user
feedback comments. Appendix 7.2 shows Python programming language source
code for getting applications rating.

2.6.4 VirusTotal

VirusTotal is a free online tool that allows users to check if the applications have
malicious behaviors or not. It also provides users with domain/URL blacklisting
services. Moreover, it provides developers with ready APIs that allow them to scan
applications using any programming languages. VirusTotal consists of more than 70
anti-malware scanners [20].

In this research, we use VirusTotal in generating our Android malware dataset. We
consider the majority result in classifying the Android applications into malware or
normal applications.

2.6.5 Sentiment Analysis

The Sentiment Analysis is a process to analyze what people feel about a specific
topic. It based on text analysis and it classifies the text to one of these classes: posi-
tive, neutral, and negative [21].

In this research, we use the open-source sentiment analysis tool called sentistrength
to analyze the user feedback comments [22].

2.6.6 Selenium

Selenium is an open-source project that consists of a set of tools that automating web
browsers for web applications for testing purposes. It supports many web browsers,
such as Google Chrome, Mozilla Firefox, Safari and Internet Explorer. It also sup-
ports different programming languages such as Python, JAVA, PHP, C#, PHP,



2.6. Malware Detection Approaches and Tools 15

and Ruby. It can be run in Windows, Linux or Mac operating systems [23].
In this research, we used Selenium to collect user’s ratings and comments from the
Google Play store website, because the Google Play store does not have ready APIs
that can be used to get user’s ratings and comments.



17

3 Related Work

In this chapter, we discuss the most recent researches related to the Android mal-
ware detection field. Section 3.1 discusses the non-machine learning available tech-
niques. Section 3.2 discusses machine learning available techniques. Finally, Section
3.3 summarizes the related work.

Malware detection techniques can be categorized into two categories: non-machine
learning and machine learning-based techniques (see Figure 3.1). Non-machine learn-
ing techniques include static, dynamic, and hybrid analysis. Machine learning-
based techniques include classical machine learning and deep learning techniques.

FIGURE 3.1: Android Malware Detection Techniques

3.1 Non-Machine Learning Techniques

In the past, non-machine learning techniques were used to detect malware. These
techniques include static, dynamic, and hybrid analysis techniques. The static anal-
ysis technique detects malware without the need to execute the application in an
emulator or device. It extracts static features from the disassembled code decom-
piled by specific tools. Dynamic analysis techniques detect malware by executing
the application and monitoring the behavior during the execution. The hybrid anal-
ysis technique can be thought of like a mix of both static and dynamic techniques
[24].

3.1.1 Static Analysis Techniques

There are many techniques that perform static analysis. Some of these techniques
depend on binary file characteristics such as extracted bytecode sequence from the



18 Chapter 3. Related Work

binary file and extracted opcode sequences after disassembling the binary file. Other
techniques depend on assembly file characteristics such as extracting the control
flow graph (CFG). In addition, some techniques based on the Android application
signature which is a sequence of bytes that is unique for each Android application,
these techniques depend on the malware signatures database and it required an up-
to-date signatures database.

Christodorescu and Jha [25] proposed a technique that can detect malicious behav-
ior of executable files by extracting the control flow graph (CFG) of executable files.
The technique focus on obfuscation patterns of the malware.

Kang et al. [26] developed a fast malware detection system that uses static analysis
to extract information from Android applications, such as the creator information
(ex. the serial number of the certificate) and permissions. Additionally, it also uses a
similarity score to classify the applications.

The static analysis techniques have many drawbacks. They cannot detect newly gen-
erated Android malware because the signature of new malware is unknown and the
binary file structure is become more complex with increasing the number of features
that Android devices support.

3.1.2 Dynamic Analysis Techniques

The dynamic analysis tracking Android applications behaviors by executing code in
virtual machines (emulators). In this section, we review the most common Android
malware detection researches based on dynamic analysis.

Enck et al. [27] built a malware detection system called TaintDroid which uses
dynamic analysis techniques such as taint tracking. The system provides real-time
analysis of Android applications by executing the applications in the virtual envi-
ronment.

Kolbitsch et al. [28] presented a malware detection technique that uses dynamic anal-
ysis. They generate fine-grained models that capture the character of the application
using system API calls and use a scanner to find similarity between unknown appli-
cations activity and these models.

The dynamic analysis techniques may fail in determining the amount of code that
the application executed. Therefore, The malicious code part may not be executed
which adversely affects the detection result. Also, The dynamic analysis techniques
are hard to implement and need a lot of time for training.

3.1.3 Hybrid Analysis Techniques

We can collect the features from Android applications using static or dynamic analy-
sis, or a combination of them. In this section, we discuss the most common research
that used hybrid analysis in the detection of Android malware.

Spreitzenbarth et al. [29] presented a system called Mobile-Sandbox that automat-
ically analyzes applications by static analysis and using the result of static analysis
to guide the dynamic analysis. The system also logs calls to native APIs. The writer
evaluated the system on over 36,000 Android applications.



3.2. Machine Learning Techniques 19

Lindorfer et al. [30] built a framework called ANDRUBIS which combines static anal-
ysis and dynamic analysis. The static analysis uses the bytecode and Manifest.xml
file and the dynamic analysis includes method tracing and system-level tracing.

Choi et al. [31] proposed a framework called GATTACA that is a combination of static
analysis and dynamic analysis. The framework extracts Mal-DNA(Malware DNA)
features which are hybrid characteristics of the Android applications. It contains
three components which are a static analyzer, debugging-based behavior monitor,
and classifier using Mal-DNA.

3.2 Machine Learning Techniques

To address the limitation in non-machine learning techniques, the researchers started
to develop more efficient techniques based on data mining and machine learning.
The machine learning techniques use many feature extraction, i.e. requested per-
missions, called API, and data representation. It also uses many classifiers, i.e. sup-
port vector machines (SVM), Random forest, the K-Nearest Neighbors algorithm
(KNN), Naive Bayes, and deep learning approach, methods to build intelligence
anti-malware.

3.2.1 Classical Machine Learning Techniques

Classical machine learning techniques repeatedly demonstrated its superior perfor-
mance on a wide variety of tasks such as optical character recognition, natural lan-
guage processing, vision, and playing games. This encourages researchers to use
classical machine learning techniques in the Android malware detection field.

Xiaoqing, Wang, and Zhu [32] proposed an Android malware detection framework
that depends on actually used permissions and system API call features. They used
machine learning classifiers such as Random Forest, SVM, KNN, and AdaboostM1
for classification, and CFS feature selection algorithms. They used a 10-fold cross-
validation approach to training and testing the system on their dataset that consists
of 1205 benign applications and 1170 malware applications. The proposed system
got very good results for the used dataset, but it cannot be generalized because the
dataset is very small. Also, the writer only considers the actual permissions used
and ignore the other permissions, this can make some errors in results.

Yerima, Sezer, and Muttik [33] proposed an Android malware detection approach
based on a parallel combination of classification decisions obtained from each classi-
fier. They extracted 179 features that include permissions, API calls, and commands
related features from Android applications McAfee internal repository dataset. The
dataset contains 3,938 benign applications and 2925 malware applications. The pro-
posed approach utilizing many classifiers such as Decision Tree, Simple Logistic,
and Naïve Bayes classifiers. The proposed system only depends on a few numbers
of features (179 features) that are not representative and they cannot be used to de-
tect all malware.

Afonso et al. [34] presented a malware detection system based on dynamic analysis
features and machine learning classification techniques. The system extracts An-
droid API calls and system call traces and evaluated the system with 7,520 Android



20 Chapter 3. Related Work

applications. This system has a drawback of it can detect malware only if the appli-
cations have certain API level.

Eskandari, Khorshidpur, and Hashemi [35] proposed a novel feature extraction method
that extracts API calls sequence using dynamic analysis. They utilize the N-grams
technique to keep the order of API calls sequence.

Wei et al. [36] proposed a real-time malware detection tool called Androidetect.
The tool is based on analyzing the relationship between system functions, permis-
sions, and API calls. It applies many machine learning classifiers, such as Naive
Bayesian and J48 decision tree. The writer train and test the tool by applying the
10-fold cross-validation technique in 200 samples (100 benign applications and 100
malware applications).

Hadad et al. [37] proposed an approach to detect malware using machine learning
algorithms with extracted features from reviews and domain lexicons from com-
puter security books. This work motivated us to use reviews written by users who
have already been exposed to the application‘s security threats and malicious be-
haviors serve as important features for detecting malware application. However,
this approach uses powerful user reviews features which can give higher detection
rates when using it with other statics features such as permissions and API calls as
proven in our research experiments.
Table 3.1 shows a summary of related work based on classical machine learning
techniques.



3.2. Machine Learning Techniques 21

TABLE 3.1: Summary of related-work based on classical machine
learning techniques.

Paper Year Dataset Features Real time
detect Classifers Meatures Value

Sanz et al. [38] 2012 820 applications

- Uses permission
- Uses feature
- Number of ratings
- Size of applications
- Users Rating

Yes

- Bayesian Networks
- Decision Trees
- KNN
- SVM

- AUC
Best Values
93%

Wu et al. [39] 2012
- 1500 benign
- 238 malware

- API Calls
- Permissions,
- Intent message passing

Yes KNN

- Accuracy
- Recall
- Precision
- F-measure

97.87%
87.39%
96.74%
91.83%

Ham and Choi [40] 2013
- 30 benign
- 5 malware

- Network
- SMS
- CPU
- Power
- Memory
-Virtual Memory

No

- SVM
- Naïve Bayesian
- Logistic Regression
- Random Forest

- Precision
- Recall
- F-Measure
- ROC Area

Best values
99.6%
99.0%
99.3%
99.8%

Sanz et al. [41] 2013
- 1811 benign
- 249 malware - Permissions Yes

- Simple Logistic
- NaiveBayes
- J48
- Random Forest

- Accurecy
Best Values
86.37%

Arp et al. [42] 2014
- 123,453 benign
- 5,560 malware

- API calls
- Permissions,
- Hardware features
- Network addresses

Yes SVM - Accurecy 94%

Liu and Liu [43] 2014
- 28548 benign
- 1536 malware - Permissions Yes J48 classifier

- Accurecy
- Precision

98.6%
89.8%

Li, Ge, and Dai [44] 2015
- 350 malware
- 350 benign

- API Calls
- Permission Yes SVM - Accurecy

81%
86%

Xu, Li, and Deng [45] 2016
- 12026 benign
- 5264 malware - ICC-related features Yes

- SVM,
- Decision Tree
- Random Forest

- Accurecy
- TPR
- FPR

97.4%
93.1%
0.67%

Xiaoqing, Wang, and Zhu [32] 2016
- 1205 bengin
- 1170 malware

- API Calls
- Permission Yes

- J48
- RandomForest
- KNN
- libSVM
- AdaboostM1

- Accurecy
- TPR

Best Values
95.%
99.6%

Milosevic and Nikola [46] 2017
- 200 benign
- 200 malware

- Permission
- Source code No

- C4.5
- Random forest
- Bayesian Networks
- SVM
- JRip
- Logistic regression

- Precision
- Recall
- F-Score

Best values
87.9%
87.9%
87.9%

Hadad et al. [37] 2017
- 2170 benign
- 336 malware - 128,863 Applications reviews No

- C4.5
- Random forest
- Decision Tree
- Logistic regression

- TPR
- FPR
- Accuracy
- AUC

Best values
34.8%
5.9%
86.7%
78.2%

Kakavand and Mohsen [47] 2018
- 200 benign
- 200 malware

- Frequency of keywords
in manifest file Yes

- SVM
- KNN

- Accuracy
- TPR

80.50%
80.00%

Yerima and Khan [48] 2019
- 22,378 benign
- 13,805 malware

- API calls
- permissions
-intents
- other

Yes

- NB
- J48
- SVM
- RF
- SL

- Accuracy
- TPR
- FPR
- F-measure

Best values
91.0%
87.1%
06.3%
90.9%

Vinod, Zemmari, and Conti [49] 2019
- 3130 benign
- 2520 malware

- permissions
- system calls No

- Random forest
- Rotation forest
-AdaBoost

- Accuracy
- FPR
- AUC

Best values
92.37%
7.6%
97.3%

Mateless et al. [50] 2020
- 24,553 benign
- 60,000 malware

- permissions
-APIs calls
- source code analysis

No
- Random Forest
- naïve Bayes
- SVM

- Accuracy
- TPR
- AUC
-F1-measure

Best values
98%
97%
99%
97%

3.2.2 Deep Learning Techniques

In recent years, the researchers used deep learning techniques in the Android mal-
ware detection area. These techniques can analyze Android applications automat-
ically and they work well in detecting unknown applications. In this section, we
review the most recent techniques.

Yuan, Lu, and Xue [51] implemented a malware detection engine called DroidDe-
tector which based on deep learning techniques. The DroidDetector automat-
ically checked Android applications depending on the static analysis and dynamic
analysis features, such as required permissions, sensitive APIs, and dynamic behav-
iors. It used 1760 malware applications and 20,000 benign applications. The benign
applications collected randomly from Google play store and maybe include malware
applications.



22 Chapter 3. Related Work

Yuan et al. [52] proposed a deep learning-based method that uses over 200 features
extracted from dynamic analysis and static analysis. It used a small dataset (250
malware and 250 benign applications) and achieve high accuracy of 96%.

Su et al. [53] utilize a deep learning approach to detect Android malware. They used
3,986 malware and 3,986 benign applications for training and testing. They extracted
over 32,000 binary features that include five types of features: Requested permission,
used permission, action, sensitive API calls, and application components.

Hou et al. [54] developed a malware detection tool called Deep4MalDroid. The
tool based on dynamic analysis and it used the Component Traversal method that
can execute the code automatically and extract system API calls. It applies deep
learning techniques to weighted API call graphs. They tool trained and tested using
real Android applications dataset collection from Comodo Cloud Security Center.
The dataset consists of 1,500 malware and 1,500 benign applications.

Zhu et al. [55] built a DeepFlow malware detection tool. The DeepFlow detects mal-
ware based on the data flows in Android applications. It used the SUSI technique to
transform the data flow features from method level to category level and it used the
Deep Belief Networks (DBN) technique for classification. The DeepFlow used 8000
malware and 3000 benign applications in building the model and it achieved a high
detection F-score of 95%.

Unlike classical machine learning techniques, the deep learning techniques have
high computational calculations and need complex hardware such as GPU. Also,
they need a lot of time for training and ruining the models. Moreover, they need a
very large dataset to achieve high performance.

3.3 Summary

After we discussed the related work of the Android malware detection field, we can
conclude that the available malware detection systems are not totally completed and
every system has its drawbacks. Some available systems training the models using
small dataset size, some of them extract a small number of features that cannot in-
clude all malware applications, some of them need a lot of time for training and
testing, some of them need a lot of hardware to be implemented, and the other sys-
tems have a bad performance.

In this research, we created a new dataset that contains many malware types( Virus,
Spyware, Trojan, Riskware, Adware, and others) and used them to build MLSecAn-
droid that able to identify Android malware using a combination of machine learn-
ing classification techniques and the number of extracted features (permissions, API
calls, user feedback, and others).



23

4 MLSecAndroid Approach

In this chapter, we discuss the MLSecAndroid approach in details. Section 4.1 shows
the proposed approach overview. Section 4.2 discusses the Android application data
collection stage. Section 4.3 discusses pre-processing stage. Section 4.4 discusses the
Android static feature extraction stage. Section 4.5 discusses feature selection stage.
Finally, Section 4.6 discusses the classification techniques used.

4.1 MLSecAndroid Approach Overview

In general, the classical machine learning approaches consist of five stages (see Fig-
ure 4.1) which are data collection, data preprocessing, feature extraction, feature
selec-tion, and classification [56].

FIGURE 4.1: General classical machine learning system overview.

We use these stages to design MLSecAndroid approach that goes through a se-
quence of stages (Figure 4.2). The first stage is the Android application data acqui-
sition where the Android APK files are collected from Android application stores.
The second stage is the Android application pre-processing where the applications
are filtrated using well-know Android malware detection tools. The third stage fea-
tures extraction where static features, such as permissions, system API calls, user
feedback are extracted from APK files and application stores. The fourth stage is
the feature selection stage where the features result from the feature extraction stage
are reduced to fewer relevant features set. The fifth stage is the classification stage
where the machine learning model is trained. The last stage is evaluating the ma-
chine learning model using confusion matrics methods.



24 Chapter 4. MLSecAndroid Approach

FIGURE 4.2: MLSecAndroid Approach Overview

4.2 Data Collection Stage

This stage aims to collect a representative dataset that will be used to build an anti-
malware system. To the best of our knowledge, there is no publicly available dataset
for Android applications along with their user’s feedback reviews. The Malicious
applications that officially reported are immediately removed from Android play
stores. Therefore, we cannot obtain their users‘ feedback for analysis.

In order to collect available Android applications, a single crawler session was per-
formed to extract the latest version for each application from the Aptoide Android
application store for three months period (September to November 2019). The crawler
uses randomly generated text to search for applications using Aptoide search and
download APIs. The number of available applications is too large. Therefore, we se-
lected a subset of applications‘ randomly. In total, we collected 17100 applications‘
APK files as shown in the table 4.1. Figure 4.3 shows the collected application types
of distribution [6].

TABLE 4.1: Dataset Statistics. Number of Samples of Each Class Over
published Years in The Google Play Store.

2011 2012 2013 2014 2015 2016 2017 2018 2019 Total

Benign 567
(86.96%)

1997
(86.53%)

2567
(89.22%)

2937
(89.35%)

1398
(89.39%)

1179
(86.56%)

1982
(89.60%)

1245
(86.04%)

1109
(79.73%)

14981
(87.61%)

Malware 85
(13.04%)

311
(13.47%)

310
(10.78%)

350
(10.65%)

166
(10.61%)

183
(13.44%)

230
(10.40%)

202
(13.96%)

282
(20.27%)

2119
(12.39%)

Total 652 2308 2877 3287 1564 1362 2212 1447 1391 17100



4.2. Data Collection Stage 25

FIGURE 4.3: Collected Dataset Applications Types

For each collected application, two crawler sessions were performed to collect user
feedback (reviews and comments). One of them collects the user feedback from the
Aptoide store using Aptoide comments; API and The other crawler uses Selenium
software to search for the application in Google play. Both of the two crawlers de-
pend on the application package name. In total, we collected 62,329 users’ feedbacks
which includes reviews and comments.

The collected user feedback‘s comments were checked by Sentistrength [22], which
is an online sentiment analysis tool that analyzes users‘ comments and returns the
results of the analysis which is positive, neutral, or negative.

The collected applications‘ APK files were scanned by VirusTotal tools, which is an
online scan engine that provides comprehensive reports regarding whether a given
application APK file is malicious or benign with a malicious threat using differ-
ent antivirus tools. There is a diversity in VirusTotal tools. Therefore, single APK
may associate with different malicious families. Thus, the collected dataset contains
many malicious families such as Virus, Spyware, Trojan, Riskware, Adware, and oth-
ers less familiar malicious threats. Figure 4.4 shows the malware family distribution
available in the collected dataset.



26 Chapter 4. MLSecAndroid Approach

FIGURE 4.4: Collected Dataset Malware Types

The final collected data includes Android application basic information(application
name, package name, size, published date, ...etc), permissions, API calls, user feed-
back(reviews and comments), and virusTotal analysis results. We store them in the
MySQL database to make it easy to process them. Figure 4.5 shows the MySQL
database schema UML diagram.

FIGURE 4.5: MySQL Database UML diagram



4.3. Pre-processing Stage 27

The following steps summarize the data collection stage:

• Step 1: Generate search keywords randomly.

• Step 2: Search for the keywords in Google play and Aptoide stores.

• Step 3: Download Android applications using Aptoide store ready Restful
APIs (Appendix 7.4).

• Step 4: Get user‘s comments, application rates, and other information from
Google play and Aptoide stores.

• Step 5: Analyze user comments using Sentistrength [22] sentiment analysis
tool.

• Step 6: Extract permissions, features, and API calls from Android .APK files
using Androguard tool (Appendix 7.1, and 7.2 ).

• Step 7: Get applications labels (malware or benign) using VirusTotal tools (Ap-
pendix 7.5).

• Step 8: Store all applications information in MySQL database tables.

4.3 Pre-processing Stage

After the data collection stage, the dataset might not be clean or not ready for pro-
cessing. Therefore, we need a pre-processing stage to clean the data and prepare it
for the feature extraction stage. In this research, the data pre-processing stage repre-
sented in the following steps:

• Data cleaning: The data cleaning can include many steps such as filling the
missing values, smooth noisy data, identify or remove outliers, and resolve in-
consistencies. We remove all records that have more than 50% missing values.

• Data integration: The data integration step combines data from multiple sources.
We use the sentiment analysis tool called Sentistrength [22] to analyze user
comments and store the result in the MySQL database. also, we use VirusTotal
[20] tools to label the applications (benign or malware).

• Data Transformation: The data transformation maps the entire set of values of
a given feature to a new set of replacement values. We use data transformation
to bin the features that have a large range of values into discrete values. Table
4.2, 4.3 shows file size and number of binned downloaded features.



28 Chapter 4. MLSecAndroid Approach

TABLE 4.2: File size binning

# Value Bin
1. 1-10000 1
2. 10001-50000 2
3. 50001-100000 3
4. 100001-500000 4
5. 500001-1000000 5
6. 1000001-5000000 6
7. 5000001-10000000 7
8. 10000001-100000000 8
9. >100000001 9

TABLE 4.3: Number of downloads

# Value Bin
1. 0-20 1
2. 21-100 2
3. 101-500 3
4. 501-1000 4
5. 1001-5000 5
6. 5001-10000 6
7. 10001-50000 7
8. 50001-100000 8
9. >100001 9

4.4 Feature Extraction Stage

To build machine learning models, the representative features need to be extracted
from the collected dataset. The features type and feature extraction methods depend
on the system type and they may vary from one system to another. For example,
Natural Language Processing (NLP) systems may extract word n-grams and charac-
ters n-grams features, Optical Character Recognition (OCR) systems may extract the
number of holes and pixels distribution in the image features, and speech recogni-
tion system may extract MFCC features.

In this research, four types of static features extracted from Android applications
APK files and application stores which are permissions, system API calls, user feed-
back, and others.

4.4.1 Android Application Permissions

Android permissions aim to protect Android by preventing Android applications
from access to sensitive information or use the device‘s hardware without taking
permission from the device users. We discuss Android permissions in section 2.2.
We used Androguard tool (section 2.6.2 ) to extract Android permissions.

The analysis of the collected dataset (Figure 4.6) shows that malware applications



4.4. Feature Extraction Stage 29

usually require more permissions than benign applications. More than 90% of the
benign applications require less than 10 permissions, while about 66.4% of malware
applications require more than 10 permissions.

There are many permissions requested by Android applications. Therefore, we se-
lect the most 150 frequent permissions requested by malware and the most 150 fre-
quent permissions requested benign applications, 300 features in total. Appendix
7.1 shows the Python code that we used to extract Android Permissions.

FIGURE 4.6: Permissions Analysis Result.



30 Chapter 4. MLSecAndroid Approach

TABLE 4.4: Most Frequent Permissions

Permissions Frequency
’android.permission.INTERNET’ 10393
’android.permission.ACCESS_NETWORK_STATE’ 7513
’android.permission.WRITE_EXTERNAL_STORAGE’ 4481
’android.permission.ACCESS_WIFI_STATE’ 2749
’android.permission.WAKE_LOCK’ 2519
’android.permission.READ_PHONE_STATE’ 2484
’android.permission.VIBRATE’ 2213
’android.permission.ACCESS_FINE_LOCATION’ 1951
’android.permission.RECEIVE_BOOT_COMPLETED’ 1857
’android.permission.ACCESS_COARSE_LOCATION’ 1620

4.4.2 System API Calls

We also extract system API call features which we discuss in section 2.3. There are
many system API calls. Therefore, we select the most 1000 frequent system API calls
using in malware and benign applications. Table 4.5 shows the most 10 frequent API
calls used by Android applications in the collected dataset.
Appendix 7.2 shows the Python code that we used to extract Android system API
calls.

TABLE 4.5: Most Frequent API Calls

API Call Frequency
Ljava/lang/Object;-&gt;()V 16775
Landroid/app/Activity;->()V 15272
Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V 15081
Ljava/lang/StringBuilder;->append(Ljava/lang/StringBuilder; 14431
Ljava/lang/StringBuilder;->toString()Ljava/lang/String; 14536
Ljava/lang/String;-&gt;equals(Ljava/lang/Object;)Z 13279
Landroid/net/Uri;->parse(Ljava/lang/String;)Landroid/net/Uri; 12489
Ljava/lang/StringBuilder;-&gt;append(I)Ljava/lang/StringBuilder; 12469
Ljava/lang/StringBuilder;-&gt;()V 12411
Ljava/lang/String;-&gt;length()I 12013

4.4.3 Users Feedback

As we discussed in section 2.4, the user feedback is a powerful feature that can use
with other features in detection Android malware applications. We get user app-
rating and comments from Android applications stores like Aptoide and Google
Play store. The Aptoide store provides developers with ready RESTFUL APIs that
can be used to get user ratings and comments, whilst Google play doesn’t support
this type of APIs. To get user ratings and comments from Google play we use Sele-
nium (section 2.6.6). Appendix 7.3 shows the Python code that we used to get user
application ratings and comments.

We extracted three features from the user’s feedbacks which are the user rate feature
that depends on the user’s rates, users comments analysis using sentiment analysis



4.4. Feature Extraction Stage 31

tool feature, and users comments analysis using the keywords list feature.

• User rate feature: The user can rate an application by choosing 0 to 5 stars and
each application can have many user rates. The following algorithm is used to
find the final rate feature value.

Algorithm 1: Find users rates feature algorithm
Result: users rates feature (FinalRate)
if Number of users rates < 10 then

FinalRate = MIN(rates);
else

FinalRate = FLOOR(AVG(rates));
end

The new applications may have a few numbers of rates and we cannot take the
average value of these rates because the malware writer may add some rates
with 5 stars for his malice application. Instead of that, we take the minimum
rate as the final rate.

• User comments analysis using sentiment analysis tool: We analyze the user
comments using the Sentistrength [22] tool. The tool takes the user’s comments
as input and returns the results of the analysis which is positive, neutral, or
negative. Then, we use the analysis results to find the feature numeric values
based on the majority. The applications with majority positive comments anal-
ysis take "0" value, the applications with majority neutral comments analysis
take "1" value, and the applications with majority negative comments analysis
take "2" value.

• User comments analysis using keywords list: The user can add comments to
applications and each application can have many user’s comments. also, the
comments may be written in a different language and may have emojis and
special characters. Therefore we should process the user comments and ex-
tract them as numeric values.

We applied the following steps to find the user’s comments feature:
Step 1: Remove Non-English characters from the comments texts
We chose the English language because it is the most common language that
users use in their comments. The comments may contain non-English charac-
ters such as special characters, emojis, and other language characters. There-
fore, we keep only English characters.

Step 2: Remove duplicated characters
The comments texts may contain words with duplicate characters. For ex-
ample, the may write the word "virus" as "virussss". Therefore, we removed
duplicate characters.

Step 3: Extract the keywords List that indicates that applications have mali-
cious behavior
We extract the most frequent N-Grams from the user’s comments. Then, we
manually choose the terms that indicate that applications have malicious be-
havior. Figure 4.7 shows the most common terms.



32 Chapter 4. MLSecAndroid Approach

FIGURE 4.7: Malware applications terms .Vs frequency.

Step 4: Check the comments of the applications
We check the application comments, the applications that have comments con-
tain one of the keywords List values take "1" value and the other applications
take "0" value.

4.4.4 Other Features

In addition to previous features, we also extract another feature such as application
type, the number of users rating the application, the number of downloads, publish
date, and developer information.

4.5 Feature Selection Stage

Feature selection is a very critical component in the machine learning workflow. It
is the process of selecting a subset of relevant features to transform high dimension
dataset into low dimension dataset without loss of the total information. We need
the feature selection stage for the following reasons [57]:

• The feature selection stage reduces training models time which increases ex-
ponentially with a number of features extracted from the dataset.

• In the feature extraction stage, the machine learning system may extract irrel-
evant features that increase the risk of overfitting especially when the number
of features is too high. Therefore, feature selection can improve the accuracy
of the system.

The feature selection techniques can be classified into three methods which are filter
methods, wrapper methods, and embedded methods [58, 59].



4.6. Classification Stage 33

In this research, the ANOVA F-value filter method is used to select the best N-
features. It picks up the intrinsic properties of the features measured via univariate
statistics test that can be used to select those features that have the strongest relation-
ship with the output variable. It is appropriate for numerical inputs and categorical
data, as our dataset. We also used a feature selection stage by selecting the most 1000
frequent system API calls and the most 300 frequent permissions from thousands of
features.

4.6 Classification Stage

Machine learning problems required an automated decision. Is an email have spam
content or not? Is a text written in the Arabic language or other languages? Is the
customer able to pay the fees? All of these problems are classification problems.

Classification aims to predict which classes the new data samples belong to. For
example, the binary classifier can predict whether the email is 0 or 1(spam/Ham).
In some cases, we need a classifier with multi-classes, such as filtering Gmail inbox
into "social", "primary", or "promotion".

There are many types of classifiers, such as SVM, Random Forest, DT, KNN, and
AdaBoost classifiers. We use them to predict if Android applications have malicious
behaviors or not.

We used six classifiers which work with labeled Android applications dataset to
find a pattern to build a proper Android malware detection models. The classifiers
are as follows:

• Support Vector Machine (SVM) Classifier: SVM is a classification method
used by finding the hyperplane that maximizes the margin between the two
classes. The hyperplane is defined by support vectors as shown in Figure 4.8.
To perform the SVM algorithm, we define an optimal hyperplane by maxi-
mization of the width of the margin between classes and the minimization of
the misclassifications [60].

• K-Nearest Neighbor Classifier: KNN classifier store all training data samples
and classify new samples based on the distance measure. Figure 4.9 shows an
example of the K-Nearest Neighbors classifier.
In this experiment, 5 neighbors were chosen to perform this classifier.

• Decision Tree Classifier: The Decision Tree classifier work by creating a model
that predicts the value of a target variable by learning simple decision rules in-
ferred from the data features.

In this experiment, we used a decision tree with a max depth equal 5, this
is the default value.

• Random Forest Classifier: Random forests generate many decision trees de-
pend on the random selection of the data and variables. The results of the
Random Forest classification are based on the generated decision tree’s major-
ity results. It has many features, such as it can handle large datasets with high
dimensions. Figure 4.10 shows an example of Random Forest classifier [61].



34 Chapter 4. MLSecAndroid Approach

FIGURE 4.8: Support Vector Machine (SVM) Classifier.

FIGURE 4.9: k-Nearest Neighborss (KNN) Classifier.

In this experiment, we use Random Forest with a number of trees in the for-
est (n_estimators) equals 10 and the maximum depth of the tree (max_depth)
equals 5.

• AdaBoost Classifier: The Ada-boost classifier fitting weak classifier algorithm
to form a strong classifier. The classifier combines multiple classifiers with a
selection of training set at every iteration and assigning the right amount of
weight in the final voting.



4.7. Training and Testing Models Stage 35

FIGURE 4.10: Random Forest Classifier.

In this experiment, we use the AdaBoost classifier with a maximum number of
estimators (n_estimators) equal 50 and the learning rate (learning_rate) equals
1 which are the default values.

• Naive Bayes Classifier:The Naive Bayes classifier is one of the most success-
ful learning algorithms which is based on the Bayes’ theorem that assuming
conditional independence between classes. Based on the rule, using the joint
probabilities of sample observations and classes, the algorithm attempts to es-
timate the conditional probabilities of classes given an observation [62].

4.7 Training and Testing Models Stage

In this stage, we evaluate classifiers using two validation methods known as k-fold
cross-validation and 70% split. The K-fold cross-validation is the most common way
of dividing the dataset which divides the dataset into k disjoint subsets. Then, (K-1)
of the subsets used for training the model and the remaining subset used for testing
the model. The training process is repeated K times and in each time a new subset
of the dataset used for testing and other subsets for training. Finally, the average of
the training results considers the final result [63]. In this research, we use 10-fold
cross-validation.

The second method is 70% split. In this method the 70% of the dataset used for
training the model and 30% of the dataset used for testing. In this research, We
trained the classifiers using 70% of each benign and malicious Android application
vectors. The training set was randomly selected from the pool of benign and mali-
cious. The data were randomly arranged in the dataset. We used the remaining of
the applications 30% of the dataset for testing.
We found the Confusion matrix and use it to calculate the Accuracy, Recall, Preci-
sion, and F-measure(see section 5.2).



37

5 Experiments and Results

This chapter discusses the experiment results. The aims of experiments are to eval-
uate the Android malware detection model performance based on static features of
the Android applications. The experiments use 1403 features that include permis-
sions, API calls, users‘ feedbacks, and other features. Also, six machine learning
classifiers applied in the experiments in order to determine which classifier can give
the best classification accuracy. Moreover, we applied some experiments to evaluate
our dataset.

This chapter organizes as follows, Section 5.1 shows the system environment speci-
fication that we use in this research. Section 5.2 display the evaluation criteria that
we use to evaluate the machine learning models. In Section 5.3, the experiments and
results are discussed in detail. Finally, Section 5.4 concludes the experiments.

5.1 System Environment

This experiment was thoroughly performed on a single Linux server. The server
specifications are:

• Processor: 8 Core, 2.8-3.0 GHz each.

• Memory: 64 GB of RAM

• Operating System: Ubuntu 18.04.2 LTS.

• Machine Learning: sklearn.

• Python: Version 2.7.15+

5.2 Evaluation Criteria

After training the model, it can be tested using the testing dataset. The testing result
shows the model performance. There are many metrics to evaluate machine learning
models. In this research, we discussed and used the Confusion matrix [64] method
which is valid to use in binary classification.
The Confusion matrix (see Table 5.1) describes the complete performance of the
model. It contains four terms which are True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN).

• True Positive (TP): The True Positive means that the predicted output is Yes
and the actual output is Yes.

• True Negative (TN): The True Negative means that the predicted output is No
and the actual output is No.



38 Chapter 5. Experiments and Results

• False Positive (FP): The False Positive means that the predicted output is Yes
and the actual output is No.

• False Negative (FN): The False Negative means that the predicted output is
No and the actual output is Yes.

TABLE 5.1: Confusion matrix.

Predicted:
No

Predicted:
Yes

Actual:
No

TN FP

Actual:
Yes

FN TP

The Confusion matrix is used to find five metrics which are error rate, accuracy,
recall, precision, and F-measure.

• Error rate: Error rate metric is defined as the number of all incorrect predic-
tions divided by the total number of the samples. The best error rate result is 0
and the worst error rate result is 1. Equation 5.1 shows the error rate metric In
terms of confusion matrix items. It also can be calculated by (1 - Accuracy).

ErrorRate =
Numbero f incorrectprediction

Totalnumbero f samples
=

FP + FN
TP + FP + TN + FN

(5.1)

• Accuracy: The accuracy metric is used for evaluating classification models. It
is the fraction of the samples that are successfully classified by the models. The
best accuracy result is 1 and the worst accuracy result is 0. Equation 5.2 shows
accuracy metric in terms of Confusion matrix items. It also can be calculated
by (1 - Error Rate).

Accuracy =
Numbero f correctprediction

Totalnumbero f samples
=

TP + TN
TP + FP + TN + FN

(5.2)

• Recall: The recall metric is defined as the number of TP over the number of TP
plus the number of FN. The best recall result is 1 and the worst recall result is
0. Equation 5.3 shows Recall metric in terms of Confusion matrix items.

Recall =
TP

TP + FN
(5.3)

• Precision: Precision metric is defined as the number of TP over the number of
TP plus the number of FP. The best precision result is 1 and the worst precision
result is 0. Equation 5.4 shows precision metric in terms of Confusion matrix
items.

Precision =
TP

TP + FP
(5.4)

• F-measure: F-score is a harmonic mean of recall and precision. The best recall
result is 1 and the worst recall result is 0. Equation 5.5 shows F-score metric In



5.3. Experiments and Results 39

terms of Confusion matrix items.

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(5.5)

5.3 Experiments and Results

The aim of the experiment is to evaluate the performance of classifiers using the fea-
tures from the Android APK files such as API calls, permissions, and user feedback
to build an accurate malware detection technique. We used six different machine
learning classifiers included support vector machines SVM, RF, DT, KNN, AdaBoost,
and Naive Bayes to evaluate the performance in this experiment. The result is shown
in terms of accuracy, recall, precision, and F1-score. In general, the higher the num-
ber of measurements, the better the result is. There is a tradeoff between precision
and recall, but we interested in recall more than precision. because of the effect of
classifying the benign applications as malware is less than the effect of classifying
the malware applications as benign applications.

We did different experiments to evaluate the six classifiers and to answer the re-
search questions. These experiments use the 10-fold cross-validation and the 70%
split evaluation methods.
This research includes the following experiments:

• Experiment 1: Machine Learning Classifiers Evaluation Experiments.

• Experiment 2: Features Selection Evaluation Experiments.

• Experiment 3: Dataset Size Evaluation Experiments.

5.3.1 Machine Learning Classifiers Evaluation Experiments

The aim of these experiments is to evaluate the classifiers performance and find
the best classifier. The experiments evaluate six classifiers which are SVM, RF, DT,
KNN, AdaBoost, and Naive Bayes classifiers. The experiments applied all dataset
records (14981 benign and 2119 malware) with all features that include permissions,
API calls, users’ feedbacks, and other features (1403 features). The classifiers are
evaluating using the 10-fold cross-validation and the 70% split evaluation methods.
Table 5.2 shows the results.

TABLE 5.2: Classifiers Evaluation Results.

10-fold validation 2/3, 1/3 split validation
Accuracy F-Score Precision Recall Accuracy F-Score Precision Recall

Decision Tree 96.01 83.43 81.52 85.45 84.82 83.67 82.95 84.42
Random Forest 95.46 89.48 91.61 87.46 91.33 87.29 88.73 85.91
Nearest Neighbors 79.44 66.83 81.34 56.72 67.58 73.39 82.32 66.22
Linear SVM 98.19 95.48 97.53 91.52 97.3 95.63 98.41 91.01
AdaBoost 92.35 83.86 84.62 83.13 90.02 84.69 87.45 82.11
Naive Bayes 91.26 79.20 81.03 77.45 89.36 82.01 83.99 80.12

The classifiers are evaluated using four metrics which are accuracy, F-Score, preci-
sion, and recall. In the malware detection field, we interested in Recall more than
other metrics, because of the effect of classifying the benign applications as malware
is less than the effect of classifying the malware applications as benign applications.



40 Chapter 5. Experiments and Results

The classifier with the best overall performance is SVM, Random Forest, Decision
Tree, AdaBoost, Naive Bayes, and Nearest Neighbors respectively.

We also applied an experiment to evaluate the ability to use more than one clas-
sifier at the same time for detecting the malware. We used the SVM, Random Forest,
and Decision tree models that result from the previous experiment as one model that
its output is the majority results from the three models. The result of multi-models
is Recall of 86.69% which is less than the result from the SVM classifier alone.

After evaluating the classifiers and finding the best one which is the SVM classifier,
then we will use it in the next experiments.

5.3.2 Features Selection Evaluation Experiments

The aim of these experiments is to evaluate the features and find the best features
vector. The experiments evaluate the features as follow:
1) The ANOVA F-value filter method is used to extract the best N-features.
2) The SVM classifier is training/testing using the selected N-features.
3) The 70% split evaluation method is used.
4) The Recall value is calculated and used as an evaluation metric.

We start with 100 features and increase them by 100 in each iteration until the to-
tal features 20000 features.
Figure 5.1 shows the features selection evaluation results. From the figure, we can
conclude that using all features (1403 features) gives the best performance. Table 5.3
shows the details of the result.

FIGURE 5.1: Number of Features .Vs Recall.



5.3. Experiments and Results 41

TABLE 5.3: Best Number of Features Experiment Results.

Experiment # # of Features Recall
1 100 32.34
2 200 44.23
3 300 49.11
4 400 49.89
5 500 53.91
6 600 56.03
7 700 68.16
8 800 71.93
9 900 73.55
10 1000 77.31
11 1100 82.78
12 1200 85.31
13 1300 91.78
14 1403 93.52
15 1600 91.29
16 2000 88.19

We also applied feature categories selection to evaluate the features categories that
include permissions, API calls, users’ feedbacks, and other features. We evaluate the
features categories by training/testing the SVM classifiers using each features‘ cate-
gory alone and then we use the combination of them. Table 5.4 shows the features
categories evaluation, we can note that the users‘ feedbacks features have improved
the overall performance.

TABLE 5.4: Features categories Experiment Results.

# Features categories # Of Features Recall
1 Permissions only 300 44.06
2 API calls only 1000 55.84
3 Users’ Feedbacks only 3 52.73
4 Permissions & API calls & other features 1400 85.89
5 Permissions & API calls & users’ Feedbacks & other features 1403 93.52

5.3.3 Dataset Size Evaluation Experiments

The aim of these experiments is to evaluate the dataset size and find the best dataset
size. The machine learning techniques work best when the number of samples in
each class are about equal because they are designed to maximize accuracy and
minimize error. The Android malware detection domain has an imbalanced class
distribution. There are many more benign applications than malicious, because of
the nature of Android application stores that contain a large percentage of benign
applications. This causes a problem and affects the model’s performance. There
are many methods used to deal with the imbalanced dataset such as resampling
method that contains two techniques over-sampling or under-sampling. The over-
sampling define as adding more copies of the minority class and the under-sampling
defined as removing some records from the majority class. We use a dataset that
contains 14981 benign and 2119 malware which means that we have imbalance



42 Chapter 5. Experiments and Results

data problems. Therefore, we applied both the under-sampling and over-sampling
techniques. The under-sampling technique reduces the benign class(majority class)
records to become equal to the number of records in malicious class (minority class).
In contrast, The over-sampling technique adds more copies of the malicious class
(minority class).

We start training/testing the SVM classifier with 500 records(250 benign and 250
malware) and increase them in each iteration until the total dataset records 29962
records. All experiments use an equal number of benign and malware class records.
Figure 5.2 shows the dataset size evaluation results. We find that the dataset that re-
sults from the under-sampling technique gives the best Recall value. Table 5.5 shows
the details of the result.

FIGURE 5.2: Size of the Dataset .Vs Recall.



5.3. Experiments and Results 43

TABLE 5.5: Best Number of Applications Experiment Results.

Experiment # # of Applications Recall
1 500 65.45
2 1000 67.35
3 1500 62.67
4 2000 65.55
5 2500 82.42
6 3000 81.58
7 3500 87.39
8 4000 90.03
9 4500 93.46
10 10000 91.40
11 20000 92.18
12 29962 92.24

We also evaluate the dataset based on published date years. The dataset contains
Android applications published between the year 2011 and the year 2019. We use
the one-year dataset for training the SVM classifier and the other years’ datasets
for testing. Table 5.6 shows the dataset evaluation based on published date years
Results, we can note that the models that training using the last year’s datasets have
best results than the years near the year 2011. This may because the old applications
haven‘t all-new features that exist on only new applications.

TABLE 5.6: Dataset Evaluation Based on Published Date Years Results

Training
Data Validation Recall/ Testing Data by Year

2011 2012 2013 2014 2015 2016 2017 2018 2019

2011 10-fold - 62.84 45.58 54.53 61.57 62.42 50.81 66.91 66.79
2/3, 1/3 split 59.91 51.88 53.73 69.22 55.25 60.15 48.76 70.63

2012 10-fold 68.88 - 49.88 46.21 61.55 65.56 55.46 47.28 58.00
2/3, 1/3 split 52.38 66.85 70.75 70.01 59.10 66.86 65.75 56.13

2013 10-fold 70.28 50.69 - 49.63 44.30 57.28 51.12 52.57 46.30
2/3, 1/3 split 47.02 53.81 60.41 67.20 69.63 52.79 42.83 45.38

2014 10-fold 62.19 66.82 69.31 - 72.43 70.21 73.82 63.83 63.85
2/3, 1/3 split 62.29 66.78 74.59 61.35 60.42 74.51 66.91 65.24

2015 10-fold 73.97 66.35 66.88 74.54 - 63.52 68.67 72.60 65.30
2/3, 1/3 split 60.76 60.80 74.44 74.84 65.69 71.72 74.87 62.99

2016 10-fold 71.42 64.61 62.13 75.59 61.24 - 71.50 65.15 67.25
2/3, 1/3 split 61.13 70.45 73.32 72.76 69.94 66.41 60.51 66.53

2017 10-fold 60.55 64.05 65.99 74.73 73.10 73.75 - 74.51 63.64
2/3, 1/3 split 69.00 64.18 64.79 70.26 67.24 75.62 71.85 63.94

2018 10-fold 70.25 62.56 72.81 65.73 75.57 61.08 68.64 - 69.55
2/3, 1/3 split 67.27 61.87 72.82 67.33 66.81 65.23 68.37 64.69

2019 10-fold 79.15 79.99 73.25 78.17 83.12 81.50 76.89 72.20 -2/3, 1/3 split 83.24 80.72 74.43 79.76 70.76 73.87 79.79 70.06



44 Chapter 5. Experiments and Results

5.4 Discussion

The aim of this research is to propose anti-malware approach that can detect mal-
ware applications on the Android marketplaces. To achieve this goal, we applied
many steps starting from data collection until machine learning models training,
testing, and evaluation.

In order to collect representive dataset, we run python jobs on the Linux server
for three months to collect data from Google Play and Aptiod stores. The dataset
contains applications that published between year 2011 and year 2019. It has differ-
ent application types such as educations, communications, and sports applications.
Also, It contains many malicious families such as Virus, Spyware, Trojan, Riskware,
and Adware. The collected dataset is good enough to build anti-malware models,
but it has an imbalanced class distribution problem. This problem related to the An-
droid malware detection domain where there are many more benign applications
than malicious, because of the nature of Android application stores that contain a
large percentage of benign applications. The dataset contains 14981 benign and 2119
malware. This causes a problem and affects the model’s performance.

There are many methods used to deal with the imbalanced dataset such as resam-
pling method that contains two techniques over-sampling or under-sampling. We
try both of them and the under-sampling gives the best results.

In total, we only used 4232 applications for building the models. Using more sam-
ples should yield higher accuracy, but the processes of downloading applications,
collecting user’s feedbacks(application comments and rates), and extracting features
from applications take a lot of time.

The collected dataset is preprocessed throw many steps that include data cleaning,
data integration, and data transformation. Then, the processed dataset is used for ex-
tra representative features. We extract four types of features which are permissions,
API calls, users‘ feedbacks, and other features. The permissions and API calls are
strong features for detecting malware in Android systems and they achieve good
performance when they applied with machine learning techniques. but, we can
achieve higher performance when we use them with user feedback features. Thus,
using a combination of permissions, API calls, and user feedback features with ma-
chine learning techniques can build an anti-malware for Android system with very
good performance.

The feature extraction stage produces thousands of features. These features may
contain irrelevant features that increase the risk of overfitting and increase model
training time. Therefore, the dataset should transform from the high dimension
dataset into low dimension dataset without loss of the total information. To achieve
that, We applied the feature selection stage by selecting the most frequent permis-
sions and API calls in both benign and malware applications. Then, we use ANOVA
F-value filter method to select the best n-features. The results show that the feature
vector with 1403 features achieves the best performance.

The feature selection stage produces feature-matrix. Then, This matrix is used for
training, testing, and evaluation of the machine learning models. We evaluate six
classifiers using two different types of evaluation methods, 10-fold cross-validation,



5.4. Discussion 45

and 70% split-validation and the results show that the classifier with the best Recall
is Linear SVM, Random Forest, Decision Tree, AdaBoost, Naive Bayes, and Nearest
Neighbors respectively. We interested in Recall metric more than other metrics, be-
cause of the effect of classifying the benign applications as malware is less than the
effect of classifying the malware applications as benign applications.

In summary, the experiment results show that our detection method can identify An-
droid malware applications with very good accuracy of 98.21% and recall of 93.52%
for the best classifier. This is higher than the closest related work discuss in section
3.1. Further, the proposed approach requires 10 seconds for analysis of the Android
APK file on average.



47

6 Conclusion and Future Work

6.1 Conclusion

In this research, we proposed a malware detection technique (MLSecAndroid) based
on static features, such as Android applications requested permissions, system API
calls, and user feedback. The proposed technique apply many types of machine
learning techniques such as support vector machines (SVM), Random Forest (RF),
Decision Tree(DT), K-Nearest Neighbors algorithm (KNN), and AdaBoost techniques.
Also, we created a new Android application dataset that contains 17100 Android
applications (14984 benign applications and 2116 malware applications). further, we
survey the recent researches and related works in the Android malware detection
field. Moreover, we analyze the collected Android applications and find the most
frequent permissions and API calls used by both benign and malware applications.
Experiment results show that the user feedback features have a large effect on model
accuracy. We achieved an accuracy of 98.21% and a recall of 93.52% for the best clas-
sifier. This is higher than the closest related work.

6.2 Future Work

The number of Android malware increase day after day and new types of malware
appears because of the increase in the number of features provided by Android de-
vices. Android malware writers become more aware of anti-malware systems and
they create new malware applications that are more complex and it’s hard to de-
tect. This will lead us to use more features such as network traffic features. Also,
we will test the feasibility of integrating our proposed approach with dynamic de-
tection techniques by extracting dynamic features such as resources’ usage, network
connections, and etc. In addition, we will implement the proposed approach on a
large-scale level by collecting more Android applications. Moreover, we will sup-
port other languages especially the Arabic language in user feedback features.



49

Bibliography

[1] International Data Corporation(IDC). Smartphone Challenges Continue in 2019,
But 5G and Emerging Markets Will Bring Growth Back to the Market in 2020, Ac-
cording to IDC. https://www.idc.com/getdoc.jsp?containerId=prUS45487719.
Accessed on 2019-12-20.

[2] McAfee. “McAfee Mobile Threat Report 2019”. In: (2019).

[3] Statista Inc. Share of people who used anti-virus software on mobile phones in Den-
mark in 2016. https://www.statista.com/statistics/649682/usage-of-
mobile-anti-virus-software-in-denmark/. Accessed on 2018-11-19.

[4] Aptoide. Android app store. https://www.aptoide.com/. Accessed on 2018-11-
19.

[5] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. “Android permissions: User attention, comprehension,
and behavior”. In: Proceedings of the eighth symposium on usable privacy and se-
curity. ACM. 2012, p. 3.

[6] Mohammad Modallal. MLSecAndroid Dataset. https://www.dropbox.com/sh/
9nn0crhopk9m1xm/AABTkYHJiBK7JCOWmGj6FSLaa?dl=0.

[7] Android Developer. Content provider basics. https://developer.android.
com / guide / topics / providers / content - provider - basics. Accessed on
2018-11-30.

[8] Android Developer. Android Platform Architecture. https://developer.android.
com/guide/platform/. Accessed on 2018-11-30.

[9] Android Developer. Power management. https://developer.android.com/
about/versions/pie/power. Accessed on 2018-11-30.

[10] Youchao Dong. “Android Malware Prediction by Permission Analysis and
Data Mining”. MA thesis. University of Michigan-Dearborn, 2015.

[11] android.com. Permissions overview. https://developer.android.com/guide/
topics/permissions/overview. Accessed on 2018-11-25.

[12] Android Manifest permission. Manifest.permission. https://developer.android.
com/reference/android/Manifest.permission. Accessed on 2018-12-1.

[13] Altyeb Altaher and Omar Mohammed Barukab. “Intelligent Hybrid Approach
for Android Malware Detection based on Permissions and API Calls”. In: In-
ternational Journal of Advanced Computer Science and Applications 8.6 (2017), pp. 60–
67.

[14] Guozhu Meng. “A Semantic-based Analysis of Android Malware for Detec-
tion, Generation, and Trend Analysis”. PhD thesis. Doctoral dissertation, Nanyang
Technological University, 2017.

[15] Xuxian Jiang and Yajin Zhou. “Dissecting android malware: Characterization
and evolution”. In: 2012 IEEE Symposium on Security and Privacy. IEEE. 2012,
pp. 95–109.

https://www.idc.com/getdoc.jsp?containerId=prUS45487719
https://www.statista.com/statistics/649682/usage-of-mobile-anti-virus-software-in-denmark/
https://www.statista.com/statistics/649682/usage-of-mobile-anti-virus-software-in-denmark/
https://www.aptoide.com/
https://www.dropbox.com/sh/9nn0crhopk9m1xm/AABTkYHJiBK7JCOWmGj6FSLaa?dl=0
https://www.dropbox.com/sh/9nn0crhopk9m1xm/AABTkYHJiBK7JCOWmGj6FSLaa?dl=0
https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/
https://developer.android.com/about/versions/pie/power
https://developer.android.com/about/versions/pie/power
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission


50 BIBLIOGRAPHY

[16] Vibha Manjunath and Martin Colley. “Reverse engineering of malware on an-
droid”. In: SANS Institute InfoSec Reading Room (2011).

[17] sourceforge. undX. https://sourceforge.net/projects/undx/. Accessed on
2018-12-1.

[18] Kali tools. dex2jar. https://tools.kali.org/reverse-engineering/dex2jar.
Accessed on 2018-12-1.

[19] androguard websit. Androguard tool. https://androguard.readthedocs.io/
en/latest/. Accessed on 2018-12-1.

[20] VirusTotal. Virustotal malware detection tool. https://www.virustotal.com.
Accessed on 2018-12-2.

[21] Yelena Mejova. “Sentiment analysis: An overview”. In: University of Iowa, Com-
puter Science Department (2009).

[22] SentiStrength. Sentiment Analysis Tool. http://sentistrength.wlv.ac.uk/.
Accessed on 2018-12-5.

[23] seleniumhq.org. What is Selenium? https://www.seleniumhq.org/. Accessed
on 2018-12-10.

[24] Anusha Damodaran. “Combining Dynamic and Static Analysis for Malware
Detection”. In: (2015).

[25] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect
malicious patterns. Tech. rep. WISCONSIN UNIV-MADISON DEPT OF COM-
PUTER SCIENCES, 2006.

[26] Hyunjae Kang, Jae-wook Jang, Aziz Mohaisen, and Huy Kang Kim. “Detect-
ing and classifying android malware using static analysis along with creator
information”. In: International Journal of Distributed Sensor Networks 11.6 (2015),
p. 479174.

[27] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
“TaintDroid: an information-flow tracking system for realtime privacy mon-
itoring on smartphones”. In: ACM Transactions on Computer Systems (TOCS)
32.2 (2014), p. 5.

[28] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiao-yong Zhou, and XiaoFeng Wang. “Effective and Efficient Malware Detec-
tion at the End Host.” In: USENIX security symposium. Vol. 4. 1. 2009, pp. 351–
366.

[29] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and
Johannes Hoffmann. “Mobile-sandbox: having a deeper look into android ap-
plications”. In: Proceedings of the 28th Annual ACM Symposium on Applied Com-
puting. ACM. 2013, pp. 1808–1815.

[30] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. v. d.
Veen, and C. Platzer. “ANDRUBIS – 1,000,000 Apps Later: A View on Current
Android Malware Behaviors”. In: 2014 Third International Workshop on Build-
ing Analysis Datasets and Gathering Experience Returns for Security (BADGERS).
Sept. 2014, pp. 3–17. DOI: 10.1109/BADGERS.2014.7.

[31] Young Han Choi, Byoung Jin Han, Byung Chul Bae, Hyung Geun Oh, and Ki
Wook Sohn. “Toward extracting malware features for classification using static
and dynamic analysis”. In: Computing and Networking Technology (ICCNT), 2012
8th International Conference on. IEEE. 2012, pp. 126–129.

https://sourceforge.net/projects/undx/
https://tools.kali.org/reverse-engineering/dex2jar
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/
https://www.virustotal.com
http://sentistrength.wlv.ac.uk/
https://www.seleniumhq.org/
http://dx.doi.org/10.1109/BADGERS.2014.7


BIBLIOGRAPHY 51

[32] Xiaoqing, Junfeng Wang, and Xiaolan Zhu. “A Static Android Mal-ware Detec-
tion Based on Actual Used Permissions Combination and API Calls”. In: World
Academy of Science, Engineering and Technology, International Journal of Computer,
Electrical, Automation, Control and Information Engineering 10.9 (2016), pp. 1547–
1554.

[33] Suleiman Y Yerima, Sakir Sezer, and Igor Muttik. “Android malware detec-
tion using parallel machine learning classifiers”. In: 2014 Eighth International
Conference on Next Generation Mobile Apps, Services and Technologies. IEEE. 2014,
pp. 37–42.

[34] Vitor Monte Afonso, Matheus Favero de Amorim, André Ricardo Abed Gré-
gio, Glauco Barroso Junquera, and Paulo Lıcio de Geus. “Identifying Android
malware using dynamically obtained features”. In: Journal of Computer Virology
and Hacking Techniques 11.1 (2015), pp. 9–17.

[35] Mojtaba Eskandari, Zeinab Khorshidpur, and Sattar Hashemi. “To incorporate
sequential dynamic features in malware detection engines”. In: Intelligence and
Security Informatics Conference (EISIC), 2012 European. IEEE. 2012, pp. 46–52.

[36] Linfeng Wei, Weiqi Luo, Jian Weng, Yanjun Zhong, Xiaoqian Zhang, and Zheng
Yan. “Machine learning-based malicious application detection of android”. In:
IEEE Access 5 (2017), pp. 25591–25601.

[37] Tal Hadad, Rami Puzis, Bronislav Sidik, Nir Ofek, and Lior Rokach. “Appli-
cation marketplace malware detection by user feedback analysis”. In: Inter-
national Conference on Information Systems Security and Privacy. Springer. 2017,
pp. 1–19.

[38] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, and Pablo
Garcia Bringas. “On the automatic categorisation of android applications”. In:
2012 IEEE Consumer communications and networking conference (CCNC). IEEE.
2012, pp. 149–153.

[39] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
“Droidmat: Android malware detection through manifest and api calls trac-
ing”. In: 2012 Seventh Asia Joint Conference on Information Security. IEEE. 2012,
pp. 62–69.

[40] Hyo-Sik Ham and Mi-Jung Choi. “Analysis of android malware detection per-
formance using machine learning classifiers”. In: 2013 international conference
on ICT Convergence (ICTC). IEEE. 2013, pp. 490–495.

[41] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia
Bringas, and Gonzalo Álvarez. “Puma: Permission usage to detect malware in
android”. In: International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Spe-
cial Sessions. Springer. 2013, pp. 289–298.

[42] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad
Rieck, and CERT Siemens. “Drebin: Effective and explainable detection of an-
droid malware in your pocket.” In: Ndss. Vol. 14. 2014, pp. 23–26.

[43] Xing Liu and Jiqiang Liu. “A two-layered permission-based android malware
detection scheme”. In: 2014 2nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering. IEEE. 2014, pp. 142–148.

[44] Wenjia Li, Jigang Ge, and Guqian Dai. “Detecting malware for android plat-
form: An svm-based approach”. In: 2015 IEEE 2nd International Conference on
Cyber Security and Cloud Computing. IEEE. 2015, pp. 464–469.



52 BIBLIOGRAPHY

[45] Ke Xu, Yingjiu Li, and Robert H Deng. “Iccdetector: Icc-based malware detec-
tion on android”. In: IEEE Transactions on Information Forensics and Security 11.6
(2016), pp. 1252–1264.

[46] Milosevic and Nikola. “Machine learning aided Android malware classifica-
tion”. In: Computers & Electrical Engineering 61 (2017), pp. 266–274.

[47] Kakavand and Mohsen. “‘Application of machine learning algorithms for An-
droid malware detection”. In: Proc. CIIS (2018), pp. 32–36.

[48] Suleiman Yerima and Sarmadullah Khan. “Longitudinal performance analysis
of machine learning based Android malware detectors”. In: 2019.

[49] P Vinod, Akka Zemmari, and Mauro Conti. “A machine learning based ap-
proach to detect malicious android apps using discriminant system calls”. In:
Future Generation Computer Systems 94 (2019), pp. 333–350.

[50] Roni Mateless, Daniel Rejabek, Oded Margalit, and Robert Moskovitch. “De-
compiled APK based malicious code classification”. In: Future Generation Com-
puter Systems (2020).

[51] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. “Droiddetector: android mal-
ware characterization and detection using deep learning”. In: Tsinghua Science
and Technology 21.1 (2016), pp. 114–123.

[52] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. “Droid-sec:
deep learning in android malware detection”. In: ACM SIGCOMM Computer
Communication Review. Vol. 44. 4. ACM. 2014, pp. 371–372.

[53] Xin Su, Dafang Zhang, Wenjia Li, and Kai Zhao. “A deep learning approach
to android malware feature learning and detection”. In: Trustcom BigDataSE I.
SPA, 2016 IEEE. IEEE. 2016, pp. 244–251.

[54] Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. “Deep4maldroid: A deep
learning framework for android malware detection based on linux kernel sys-
tem call graphs”. In: 2016 IEEE/WIC/ACM International Conference on Web Intel-
ligence Workshops (WIW). IEEE. 2016, pp. 104–111.

[55] Dali Zhu, Hao Jin, Ying Yang, Di Wu, and Weiyi Chen. “DeepFlow: Deep
learning-based malware detection by mining Android application for abnor-
mal usage of sensitive data”. In: Computers and Communications (ISCC), 2017
IEEE Symposium on. IEEE. 2017, pp. 438–443.

[56] P. Bruce and A. Bruce. Practical Statistics for Data Scientists. O’Reilly, 2017.

[57] Pat Langley et al. “Selection of relevant features in machine learning”. In: Pro-
ceedings of the AAAI Fall symposium on relevance. Vol. 184. 1994, pp. 245–271.

[58] Matthew Shardlow. “An analysis of feature selection techniques”. In: The Uni-
versity of Manchester (2016), pp. 1–7.

[59] Avrim L Blum and Pat Langley. “Selection of relevant features and examples
in machine learning”. In: Artificial intelligence 97.1-2 (1997), pp. 245–271.

[60] Justin Sahs and Latifur Khan. “A machine learning approach to android mal-
ware detection”. In: Intelligence and security informatics conference (eisic), 2012
european. IEEE. 2012, pp. 141–147.

[61] M Alam and S Vuong. “Random Forest Classification for Android Malware”.
In: Proceedings of IEEE International Conference on Internet of Things. 2013.



BIBLIOGRAPHY 53

[62] Ivan Firdausi, Alva Erwin, Anto Satriyo Nugroho, et al. “Analysis of machine
learning techniques used in behavior-based malware detection”. In: 2010 Sec-
ond international conference on advances in computing, control, and telecommunica-
tion technologies. IEEE. 2010, pp. 201–203.

[63] Thomas G Dietterich. “Ensemble methods in machine learning”. In: Interna-
tional workshop on multiple classifier systems. Springer. 2000, pp. 1–15.

[64] M Hossin and MN Sulaiman. “A review on evaluation metrics for data classi-
fication evaluations”. In: International Journal of Data Mining & Knowledge Man-
agement Process 5.2 (2015), p. 1.



55

7 Appendix

7.1 Androguard - Get Permissions

The following code used to analyze and get Permissions from Android APK files
using the Androguard program.

from androguard import misc
from androguard import session
import XlsxFileFunctions
# Get Android application permissions
ListOfPermissions=[]
sess = misc.get_default_session()
# Use the session
a, d, dx = misc.AnalyzeAPK(fileName, session=sess)
permissions=a.get_permissions()
for perm in permissions:

ListOfPermissions.append(perm)

7.2 Androguard - Get System API Calls

The following code used to analyze and get system API calls from Android APK
files using the Androguard program.

from androguard import misc
from androguard import session
import XlsxFileFunctions
from androguard.misc import AnalyzeAPK
# Get Android system API calls
systemAPI_list=[]
a, d, dx = AnalyzeAPK("AndroidAPK_Filename.apk")
for m in dx.find_methods():
orig_method = str(m.get_method())

systemAPI_list.append(orig_method)



56 Chapter 7. Appendix

7.3 Aptoide - Get Android Applications Rating and Com-
ments

The following code used to get Android applications rates and comments from Ap-
toide applications store. The code used ready API provided by Aptoide.

import json
import requests
BASE_URL="https://ws75.aptoide.com/api/7/app/getMeta/package_name="
COMMENTS_URL="https://ws75.aptoide.com/api/7/comments/get/package_name="
response = requests.get(BASE_URL+app_package_name)
app_inform_obj = json.loads(response.text)
if app_inform_obj[’info’][’status’] in "OK":

#Get Application Rating
print "Avarge Rate: "+str(app_inform_obj[’data’][’stats’][’rating’][’avg’])

#Get user comments
response = requests.get(COMMENTS_URL+app_package_name)
app_comments_list = json.loads(response.text)
if app_comments_list[’info’][’status’] in "OK":

for i in range(app_comments_list[’datalist’][’count’]):
print app_comments_list[’datalist’][’list’][i][’body’]

else:
print "application not exist"

7.4 Aptoide - Download Applications

The following code used to download applications from the Aptoide application
store.

import urllib2
print(’Beginning file download .. ’)
url = ’http://pool.apk.aptoide.com/savou/filename.apk’
filedata = urllib2.urlopen(url)
datatowrite = filedata.read()
with open(’saved_file_name.apk’, ’wb’) as f:

f.write(datatowrite)

7.5 VirusTotal - Testing Android Applications

The following code uses VirusTotal tools to check if Android applications have ma-
licious behaviors or not.

import requests
import os
base_url = ’https://www.virustotal.com/vtapi/v2/file/scan’
parameters = {’apikey’: ’<apikey>’}
files = {’file’: (’AndroidAPKFile.apk’, open(’myfile.exe’, ’rb’))}
response = requests.post(base_url, files=files, params=parameters)
print(response.json())


	Declaration of Authorship
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Research Problem and Motivation
	Research Questions
	Objectives
	Contributions
	Thesis Organization

	Background
	Android System Architecture
	System Applications
	Java API Framework
	Native C/C++ Libraries
	Android Runtime
	Hardware Abstraction Layer (HAL)
	The Linux Kernel
	Power Management

	Android Permissions
	Privacy or Read Related Permissions
	Write or Modify Related Permissions

	Android System API Calls
	Android Users Feedback
	Android System Malware
	Malware Detection Approaches and Tools
	Reverse Engineering
	Androguard
	Aptoide
	VirusTotal
	Sentiment Analysis
	Selenium


	Related Work
	Non-Machine Learning Techniques
	Static Analysis Techniques
	Dynamic Analysis Techniques
	Hybrid Analysis Techniques

	Machine Learning Techniques
	Classical Machine Learning Techniques
	Deep Learning Techniques

	Summary

	MLSecAndroid Approach
	MLSecAndroid Approach Overview
	Data Collection Stage
	Pre-processing Stage
	Feature Extraction Stage
	Android Application Permissions
	System API Calls
	Users Feedback
	Other Features

	Feature Selection Stage
	Classification Stage
	Training and Testing Models Stage

	Experiments and Results
	System Environment
	Evaluation Criteria
	Experiments and Results
	Machine Learning Classifiers Evaluation Experiments
	Features Selection Evaluation Experiments
	Dataset Size Evaluation Experiments

	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Androguard - Get Permissions
	Androguard - Get System API Calls
	Aptoide - Get Android Applications Rating and Comments
	Aptoide - Download Applications
	VirusTotal - Testing Android Applications




